httptestserver Documentation
Release 0.1.0

Javier Santacruz

November 12, 2014

Contents

1 Functions 3
2 Mixin classes 5
2.1 Development L e e 6
3 Tests 7
4 Documentation 9
41 APL . L e e 9
42 Changes v o i e e e e e e e e e e 12
43 Indicesandtables e e e e e e e e e 12
Python Module Index 13

httptestserver Documentation, Release 0.1.0

HTTP/HTTPS server which can be run within a Python process. Runs in a different thread along with the application
exposing a simple thread-safe API, so the calling code can control how the server behaves.

Sometimes integration tests cannot do with mocking the socket . socket function avoiding real networking, this
partially solves that problem by providing a real server which is easy to use and can perform real network communi-
cation in a controlled and reliable way.

Features:
* Runs in a different thread at the same time of your tests.
* Control server responses and behaviour.
* Access to server internal state and data after or during the request.
* HTTPs support, it bundles a self-signed certificate useful for testing.
* History of all server performed requests/responses.

Supports python 2.7 and 3.4

Contents 1

httptestserver Documentation, Release 0.1.0

2 Contents

CHAPTER 1

Functions

Functions that return a running server instance:

>>> server = start_server ()
>>> server.host
7127.0.0.1"

Or context managers for limited use:

>>> with http_server () as server:
. server.host
7127.0.0.1"

httptestserver Documentation, Release 0.1.0

4 Chapter 1. Functions

CHAPTER 2

Mixin classes

Mixins that include an working server as self.server.

import requests
from httptestserver import HttpsServerTest

class TestApplication (HttpsServerTest) :
Test what was actually get by the server
def test_it_should_send_headers (self):
headers = {’key’: ’"value’}
requests.get (self.default_url, headers=headers)

assert self.server.data[’headers’]['key’] == ’'value’

Control server responses
def test_it_should_parse_json_response (self) :

self.server.data[’headers’] = {’/Content-Type’: ’"application/json’}
self.server.data[’ response_content’] = "{’key’: ’"value’}"

response = requests.get (self.default_url)

assert response.json() == {’key’: 'value’}

Make the server behave as you want
def test_it_should_raise_timeout_at_2s_wait (self):
self.server.data[’ response_timeout’] = 2

try:

requests.get (self.default_url, timeout=1)
except requests.exceptions.Timeout:

pass
else:

assert False

Access to server’s requests/responses history
def test_it_should_make_two_requests(self):

self.server.reset ()

requests.get (self.default_url)
requests.get (self.default_url + 727)

assert len(self.server.history) == 2

httptestserver Documentation, Release 0.1.0

assert self.server.history[-1][’'path’] == self.default_url + "2’/

2.1 Development

In order get a development environment, create a virtualenv and install the desired requirements.

virtualenv env
env/bin/activate
pip install -r dev-requirements.txt

The included certificate was generated using SSL:

openssl req —new —-x509 -keyout server.pem -out server.pem -days 40000 —-nodes

6 Chapter 2. Mixin classes

CHAPTER 3

Tests

To run the tests just use tox or nose:

tox

nosetests

httptestserver Documentation, Release 0.1.0

8 Chapter 3. Tests

CHAPTER 4

Documentation

To generate the documentation change to the docs directory and run make
changelog packages in order to be able to run the makefile.

cd docs
make html
open build/html/index.html

4.1 Api

Functions which return a running server instance:

httptestserver.start_server (host=None, port=None)
Create a started HTTP server listening in host:port

Parameters

* host — (default: 127.0.0.1) Host for the server to listen.

. You need to install the sphinx and

* port — default: random) Port of the server to listen (should not be in use).

Returns A created and started Server

httptestserver.start_ssl_server (host=None, port=None, certfile=None, keyfile=None)

Create a started HTTPS server listening in host:port
It configures server certificate using certfile and keyfile.
Parameters

* host — (default: 127.0.0.1) Host for the server to listen.

* port — (default: random) Port of the server to listen (should not be in use).

* certfile — (default: packaged .pem) Path to certificate file

as accepted by HTTPServer.

* keyfile — (default: None) Path to private key file as accepted by HTTPServer. Default

comes bundled with certfile.
Returns A created and started Server
Context managers for short in-place usage:

httptestserver.http_server (*args, **kwds)
Context of a started HTTP Server

httptestserver Documentation, Release 0.1.0

with http_server () as server:
use server

See function start_server ().

httptestserver.https_server (*args, **kwds)
Context of a started HTTPS Server

with https_server () as server:
use server

See function start_ssl_server ().
The Server class, with all the available functionality:

class httptestserver.Server (host, port, scheme="http’, handler=<class httptestserver.server.Handler

at 0x7fa833e3cef0>)
HTTP Server

Starts in a child thread. Thread stops and closes when the caller does. Handles each request on a new thread,
forks on each request.

Server state after each request can be checked as a dict through the thread-save attribute dat a, which is updated
at the begining of each request. See Handler and BaseHTTPRequestHandler to see the information
available on that dict.

>> server.data
{’requestline’: 'GET /url HTTP/1.1’, ’path’: ' /url’, ...}

if several requests are made, their state are kept in order in the history:

>> server.history

[
{"path’: 7 /first’, ..},
{"path’: ’/second’, ..}
]

About multithreading: It is necessary that each request gets serverd by a different thread, in case that more than
one request is made at the same time. If any two requests are attended at the same time by the same thread, risk
of deadlock exists.

data
Gives access to current server state dict (read-write)

List of values that can be set to control the server behaviour:

response_status An int with the status code of the next response.

response_headers A dict or a (k, v) tuple with all the headers to be sent on the next response.
response_content A bytes with the body of the next response.

response_timeout A number with the time in seconds to wait before starting a response.

response_clear True if server user state should be reset after responding. This is useful when responding
with 3xx redirections.

response_reset True if server state should be totally reset after the response.

history
Gives access to all the server states in a list (read-only)

reset ()
Resets all server data in data

10 Chapter 4. Documentation

httptestserver Documentation, Release 0.1.0

response_data
All user-defined response properties

classmethod start_server (host, port)
Creates and starts a http Server

Parameters

* host — Host for the server to listen.

* port — Port of the server to listen (should not be in use).
Returns A created and started http Server

classmethod start_ssl_server (host, port, certfile, keyfile)
Creates and starts a https Server

Parameters
* host — Host for the server to listen.
* port — Port of the server to listen (should not be in use).
« certfile — Path to certificate file as accepted by HTTPServer.

« Kkeyfile — Path to private key file as accepted by HTTPServer. Default it’s bundled with
certfile.

Returns A created and started https Server

url (path)
Compose a full URL to the server from the url path:

>> server.url (' /test/url’)
http://127.0.0.1:8888/test/url

The default handler is Handler but it can be subclassed and extended:

class httptestserver.server.Handler (request, client_address, server)
Handles all requests and collects server data

Handles all the requests on the handle_request () method which is also responsible for building a response.

The Server.data dictionary is updated on at the begining of each request with the current server state. See
BaseHTTPRequestHandler documentation for the full list of server attributes available.

The default handler behaviour can be controlled through Server.data.

handle_request ()
Handles server request/response

save_history ()
Create a new entry in history

state
Dict with the current server state

update_state()
Copies current server state

Some mixings to start the server and use it directly from tests.

class httptestserver.HttpServerTest

options ={}

4.1. Api 11

httptestserver Documentation, Release 0.1.0

classmethod setupClass ()

class httptestserver.HttpsServerTest

options = {‘verify’: False}

classmethod setupClass ()

4.2 Changes

List of all the changes throughout different versions.

4.2.1 0.1.0

Released: 2014-11-12
Initial version

¢ [feature] Adds Server class.

¢ [feature] Adds start_server () and start_ssl_server () convenience functions.

¢ [feature] Adds http_server () and https_server () context managers.

¢ [feature] Adds HttpServerTest () and HttpsServerTest () mixins classes to be used in testing.

4.3 Indices and tables

* genindex
* modindex

e search

12

Chapter 4. Documentation

Python Module Index

h

httptestserver, |

13

httptestserver Documentation, Release 0.1.0

14 Python Module Index

Index

D

data (httptestserver.Server attribute), 10

H

handle_request() (httptestserver.server.Handler method),
11

Handler (class in httptestserver.server), 11

history (httptestserver.Server attribute), 10

http_server() (in module httptestserver), 9

https_server() (in module httptestserver), 10

HttpServerTest (class in httptestserver), 11

HttpsServerTest (class in httptestserver), 12

httptestserver (module), 1

O

options (httptestserver.HttpServerTest attribute), 11
options (httptestserver.HttpsServerTest attribute), 12

R

reset() (httptestserver.Server method), 10
response_data (httptestserver.Server attribute), 10

S

save_history() (httptestserver.server.Handler method), 11

Server (class in httptestserver), 10

setupClass() (httptestserver.HttpServerTest class method),
11

setupClass() (httptestserver.HttpsServerTest class
method), 12

start_server() (httptestserver.Server class method), 11

start_server() (in module httptestserver), 9

start_ssl_server() (httptestserver.Server class method), 11

start_ssl_server() (in module httptestserver), 9

state (httptestserver.server.Handler attribute), 11

U

update_state() (httptestserver.server.Handler method), 11
url() (httptestserver.Server method), 11

15

	Functions
	Mixin classes
	Development

	Tests
	Documentation
	Api
	Changes
	Indices and tables

	Python Module Index

